1106D-E70TAG2

135 kWm (Gross) @ 1500 rpm 155 kWm (Gross) @ 1800 rpm

ElectropaK

Basic technical data

General installation

 Cycle
 4 stroke

 Induction system
 Turbocharged and air charge cooled

 Combustion system
 Direct injection diesel

 Compression ratio
 16.8 : 1

 Bore
 105 mm

 Stroke
 135 mm

 Cubic capacity
 7.01 litres

 Direction of rotation
 Anticlockwise when viewed from flywheel

 Firing order
 1, 5, 3, 6, 2, 4

 Estimated total weight (dry)
 788 kg

 Estimated total weight (wet)
 822 kg

 Overall dimensions (ElectropaK)

 Height
 1142 mm

 Length (air cleaner fitted)
 1763 mm

 Width
 788 mm

 Moments of inertia
 Engine rotational components
 0.27 kgm²

 Flywheel
 1.26(SAE2) kgm²

1100

Series

Centre of gravity, ElectropaK

Forward from rear of block (wet)	476 mm
Above crankshaft centre line (wet)	
Offset to RHS of crankshaft centre line (wet)	16 mm
Performance	
Speed variation at constant load	± 0.18%
Cyclic irregularity at standby power	0.003
All ratings within	± 3%

Note: All data based on operation to ISO 3046-1:2002 standard reference conditions.

Sound level

Average sound pressure level for standby power @ 1 m..TBC

Test conditions

Air temperature	25°C
Barometric pressure	
Relative humidity	44%
Air inlet restriction at maximum power	5 kPa (maximum)
Exhaust back pressure at maximum power	15 kPa (maximum)
Fuel temperature	40°C

If the engine is to operate in ambient conditions other than those of the test conditions, suitable adjustments must be made for these changes. For full details, contact Perkins Technical Service Department.

General Installation		50 Hz (1	500 rpm)	60 Hz (1800 rpm)	
		Prime	Standby	Prime	Standby
Gross engine power	kW	135.9	149.7	155.6	171
Brake mean effective pressure	kPa	1549.7	1707.9	1478.1	1626.2
Mean piston speed	m/s	6	.7	8.1	
ElectropaK nett engine power	kW	129.0	142.9	145.4	161
Engine coolant flow (against 35 kPa restriction)	litres/min	14	12	170	
Combustion air flow (at STP)	m³/min	10.6	11.0	13.9	14.4
Exhaust gas flow (maximum)		24.00	25.00	28.77	29.93
Exhaust gas temperature (maximum) in manifold (after turbocharger)	°C	513		450	
Nett engine thermal efficiency	%	36.6	37.4	38.9	39.4
Timinal gapant alactrical autout (0.9nf 25°C)	kWe	114	126	135	143
Typical genset electrical output (0.8pf 25°C)	kVA	142	157	169	178
Regenerative power (estimated)	kW	11.5		13.2	
Assumed alternator efficiency	%	91 91		91	92
Energy balance					
Heat in fuel	kW	352.4	381.5	400.1	434.7
Power to cooling fan	kW	4	4	7	7
Power to coolant and lubricating oil	kW	64.0	72.5	69	74.9
Power to residual losses (alternator)	kW	2.8	2.8	3.1	3.1
Power to exhaust	kW	107.5	114.1	119.5	128.3
Energy to charge coolers	kW	19.4	21.2	29.7	32.5
Power to radiation	kW	24.0	25.4	26.3	27.9

Prime power: Unlimited hours usage with an average load factor of 80% of the published prime power over each 24 hour period. A 10% overload is available for 1 hour in every 12 hours operation.

Standby power: Limited to 500 hours annual usage, with an average load factor of 80% of the published standby power rating over each 24 hour period. Up to 300 hours of annual usage may be run continuously. No overload is permitted on standby power.

Cooling system

Cooling pack

Overall weight (wet)	
Overall face area	
Width	716 mm
Height	
Radiator	
_	054.040 3

351,840 mm²
4 rows, Aluminium
10 fins per inch, Aluminium
440 mm
800 mm
100 kPa

Charge cooler

Face area	203,483 mm ²
Number of rows and materials	2 rows, Aluminium
Matrix density and material	.10 fins per inch, Aluminium
Width of matrix	
Height of matrix	

Fan

Diameter	610 mm
Drive ratio	1.25:1
Number of blades	7
Material	Nylon
Type	
Air flow @ 1800 rpm	
Power @ 1800 rpm	7 kW

Coolant
Total system capacity
System drawdown capacity
Engine capacity
Maximum top tank temperature
Temperature rise across engine
(maximum rating dependent)
Maximum permissible external system resistance
Thermostat operation range
Shutdown switch setting
Coolant pump method of drive
Recommended coolant immersion heater rating (minimum)0.75 kW
Recommended coolant
BS6580 - 1992, ASTM D3306 and ELC coolants to 1E1966

Duct allowance

Maximum additional restriction (duct allowance to cooling airflow and resultant minimum air flow) - Standby power

Description	rpm	kPa	kg/s
Duct allowance with inhibited coolant at 53°C			
Minimum air flow	1500	0.125	3.5
	1800	0.12	5.2
Duct allowance with inhibited coolant at 46°C			
Minimum air flow	1500	0.200	3.25
	1800	0.200	4.6

Electrical system

Alternator	8SI
Alternator voltage	12 volts
Alternator output	65 amps
Starter	AZF
Starter motor voltage	12 volts
Starter motor power	4.0 kW
Number of teeth on the flywheel	126
Pull-in current of starter motor solenoid	
@ 25°C maximum (1)	olts 68 amps
Hold-in current of starter motor solenoid	
@ 25°C maximum (1)	olts 20 amps
Engine stop methodCAN link signal or Hardwire input to e	engine ECM
1 All leads to rated at 10 amps minimum	

Cold start recommendations

Minimum required cranking speed over TDC	60 rpm
--	--------

'	0 1		
	5 to -5°C	-5 to -20°C	-20 to -25°C
Starter		AZF	
Battery	1 x 750CCA	2 x 750CCA	2 x 900CCA
Maximum breakaway current	NA		
Cranking current	1000A		
Aids	None Glowplugs		
Minimum mean cranking speed	130 rpm	100 rpm	100 rpm

Note: Battery capacity is defined by the 20 hour rate

If a change to a low viscosity oil is made, the cranking torque necessary at low ambient temperatures is much reduced. The starting equipment has been selected to take advantage of this. It is important to change to the appropriate multigrade oil in anticipation of operating in low ambient temperatures

Exhaust system

Maximum back pressure - 1500 rpm &1800 rpm 1	5 kPa
Exhaust outlet, internal diameter 115.	9 mm

Fuel system

Injection components

Injector	Electronic CRIN2
Fuel pump	
Fuel priming	

ruei priming

Priming pump type	Manual
Maximum priming time	

Fuel feed

Fuel specification

Fuel standard..........Various (contact Perkins Technical Department)

Fuel consumption

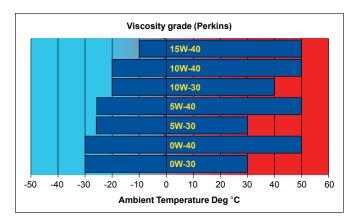
Type of operation and application				
Load	1500 rpm		1800	rpm
	g/kWh	litres/hr	g/kWh	litres/hr
110% Prime power	212.6	38.0	212.1	43.1
100% Prime power	216.5	35.1	214.6	39.7
75% Prime power	229.6	27.9	231.4	32.1
50% Prime power	234.1	19.0	240.3	22.2
25% Prime power	249.6	10.2	263.9	12.2

Induction system

Maximum air intake restriction

Clean filter	4 kPa
Dirty filter	
Air filter type	paper element

Lubrication system


Maximum total system oil capacity	17.5 litres
Minimum oil capacity in sump	
Maximum oil capacity in sump	
Maximum engine operating angles -	
Front up, front down, right side, left side	7°
Sump drain plug tapping size	
Shutdown switch setting (where fitted)	
Oil pressure shut down switch	90 kPa Falling
•	_

Lubricating oil

Lubricating on	
Relief valve opening pressure	430 kPa
Pressure at maximum speed	340 kPa
Maximum continuous oil temperature (in rail)	125°C
Oil consumption at full load (% of fuel)	< 0.1

Recommended SAE viscosity

A multigrade oil must be used which conforms to API CH4 or CI4 ACEA E5 must be used, see illustration below:

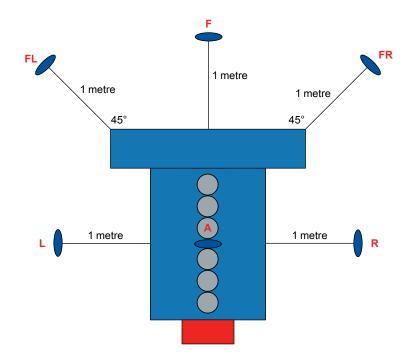
Mountings

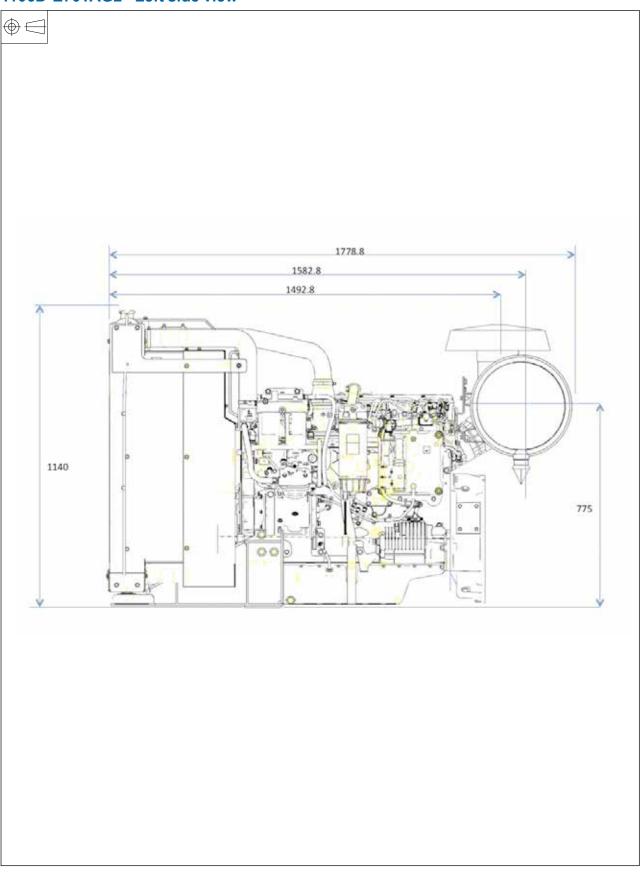
Maximum static bending moment at rear face of block............1130 Nm Maximum permissible overhung load on the flywheel Calculated on request Maximum bending moment at rear of flywheel housing. ± 3000 in Shock Nm

Load acceptance

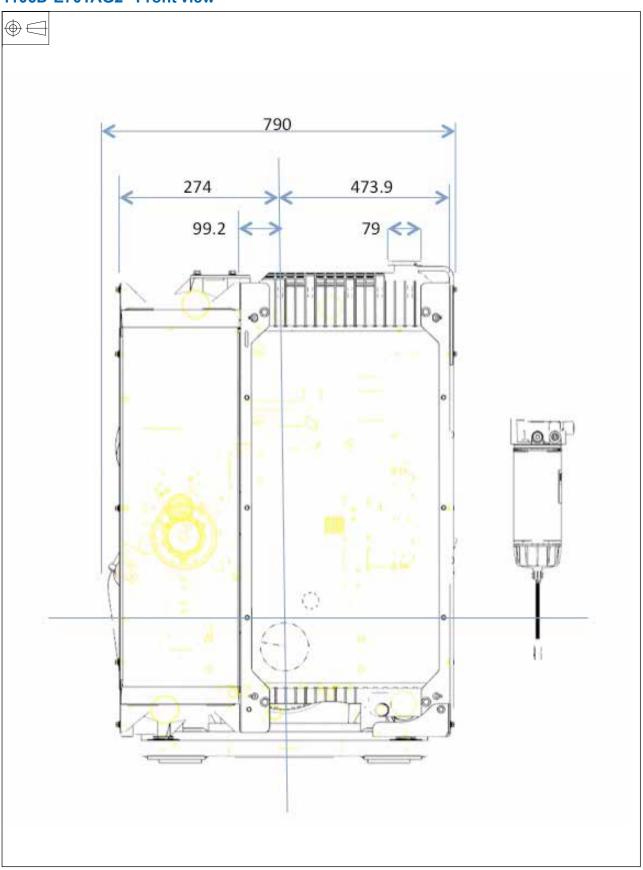
The data below complies with the requirements of classification 3 and 4 of ISO 8528-12 and G2 operating limits stated in ISO 8528-5.

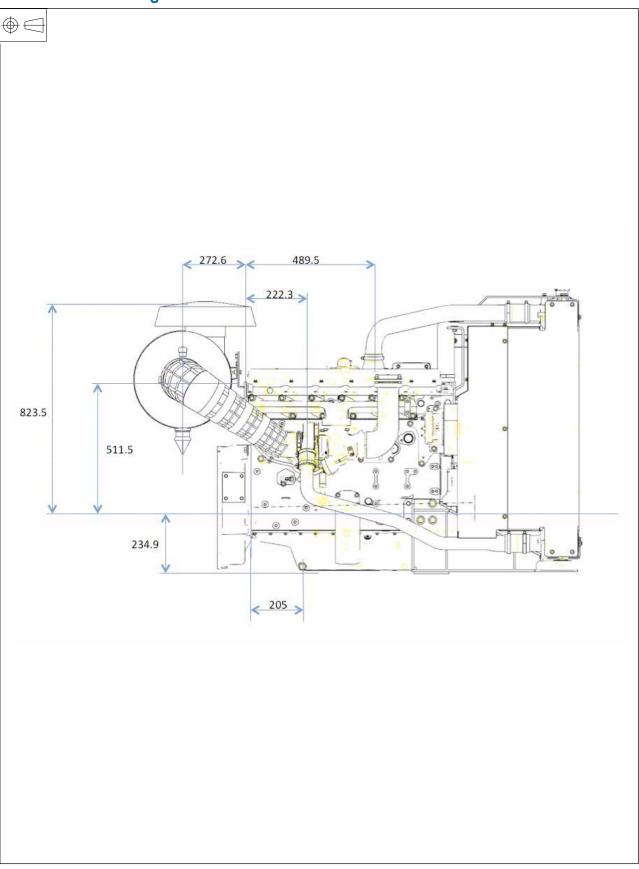
Initial load application: When engine reaches rated speed (15 seconds maximum after engine starts to crank).

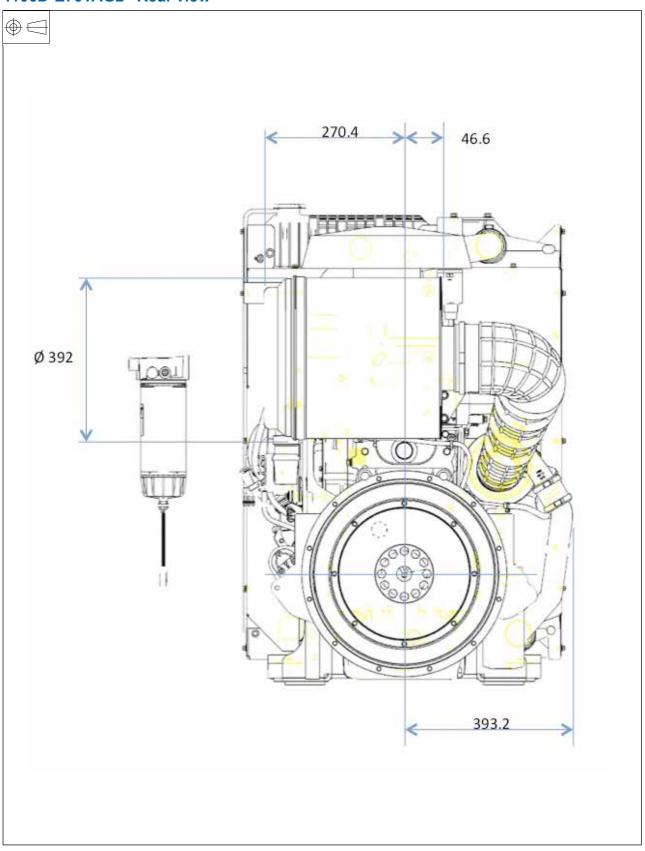

Description	Units	1500 rpm	1800 rpm
% of prime power	%	95.0	93.5
Load	kWe	120.0	121.5
Transient frequency deviation	%	18.9	9.5
Frequency recovery time	Seconds	1.6	0.9

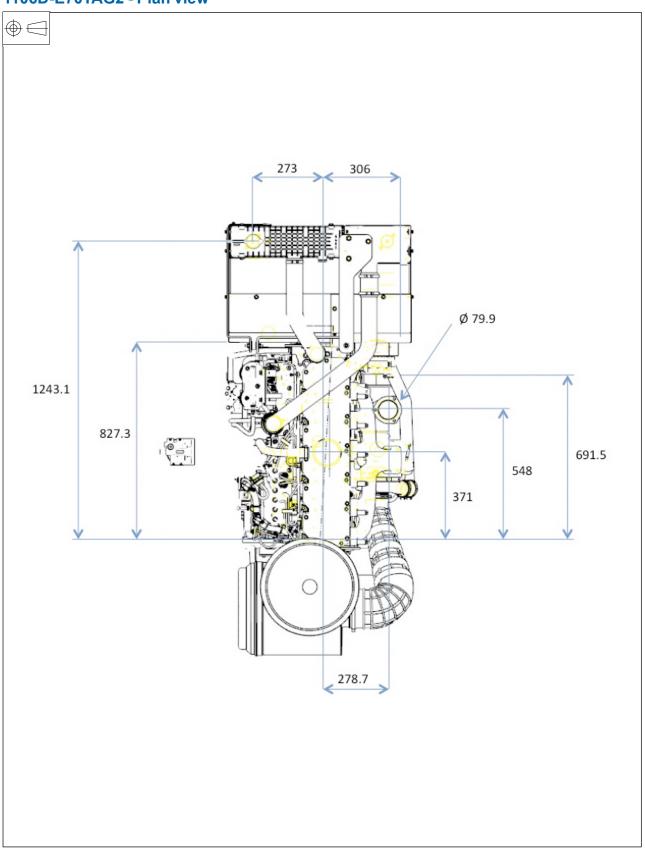

Noise data

Noise levels (predicted)


Prime power noise level dB(A)			
Position	50 Hz	60 Hz	
F	95.6	99.8	
R	95.6	99.3	
L	95.4	99.0	
Α	92.9	96.2	
FR	94.7	98.9	
FL	94.9	98.9	


1106D-E70TAG2 - Left side view


1106D-E70TAG2 - Front view


1106D-E70TAG2 - Right side view

1106D-E70TAG2 - Rear view

1106D-E70TAG2 - Plan view

